
Natural Language Processing:
Introduction and Preliminaries

CSE538 - Spring 2025
Instructor: H. Andrew Schwartz

1. Computers and Natural Language

2. Goal of NLP

3. Course Overview

4. Fundamentals Review
a. Regular Expressions
b. Probability Theory

5. Words and Corpora

uL8kLyze8kz.F8Yk(.eukuL8k?.zf!

uL8kLyze8kz.F8Yk(.eukuL8k?.zf!
the horse raced past the barn.

t : u
h : L
e : 8
 : k
h : L
o : y
r : z
s : e
e : 8
 : k
r : z
a : .
c : F
e : 8
d : Y
 : k
p : (
a : .
s : e
t : u
 : k
t : u
h : L
e : 8
 : k
b : ?
a : .
r : z
n : f
. : !

uL8kLyze8kz.F8Yk(.eukuL8k?.zf!

Most of modern NLP language understanding works by simply
analyzing the patterns of language without any external knowledge.
(over massive datasets and very large models)

uL8kLyze8kz.F8Yk(.eukuL8k?.zf!

Most of modern NLP language understanding works by simply
analyzing the patterns of language without any external knowledge.
(over massive datasets and very large models)

 > 7 words? Likely a unique sequence

Natural language is complicated!

Natural language is complicated!

Natural language is complicated!

Natural language is complicated!

Natural language is complicated!

a sequence
of characters

The horse raced past the barn.

What is natural language like for a computer?

The horse raced past the barn.

The horse raced past the barn fell.

What is natural language like for a computer?

The horse raced past the barn.

The horse raced past the barn fell.

What is natural language like for a computer?

The horse raced past the barn.

The horse raced past the barn fell.

The horse runs past the barn.

The horse runs past the barn fell.

What is natural language like for a computer?

The horse raced past the barn.

The horse raced past the barn fell.

The horse runs past the barn.

The horse runs past the barn fell.

that was

What is natural language like for a computer?

Colorless purple ideas sleep furiously. (Chomsky, 1956; “purple”=> “green”)

More empathy for the computer...

Colorless purple ideas sleep furiously. (Chomsky, 1956; “purple”=> “green”)

Fruit flies like a banana. Time flies like an arrow.

Daddy what did you bring that book that I don’t want to be
read to out of up for?

(Pinker, 1994)

More empathy for the computer...

She ate the cake with the frosting.

More empathy for the computer...

She ate the cake with the frosting.

[‘She’, ‘ate’, X, ‘with’, Y, ‘.’]

More empathy for the computer...

She ate the cake with the frosting.

[‘She’, ‘ate’, X, ‘with’, Y, ‘.’]
=> Y is a part of X

More empathy for the computer...

She ate the cake with the frosting.

She ate the cake with the fork.

[‘She’, ‘ate’, X, ‘with’, Y, ‘.’]
=> Y is a part of X

More empathy for the computer...

She ate the cake with the frosting.

She ate the cake with the fork.

He put the port on the ship.

He walked along the port of the ship.

More empathy for the computer...

She ate the cake with the frosting.

She ate the cake with the fork.

He put the port on the ship.

He walked along the port of the ship.

He walked along the port next to the ship.

More empathy for the computer...

She ate the cake with the frosting.

She ate the cake with the fork.

He put the port on the ship.

He walked along the port of the ship.

He walked along the port next to the ship.

More empathy for the computer...

NLP’s 0ld grand goal: completely understand natural language.

NLP’s practical applications <circa 2021>

● Machine translation

NLP’s practical applications

● Machine translation

The spirit is willing, but the flesh is weak.

English -> Russian -> English

The vodka is good, but the meat is rotten.

(Garbade, 2018)

NLP’s practical applications

● Machine translation
● Sentiment Analysis

NLP’s practical applications

● Machine translation
● Sentiment Analysis

I like the the movie. The movie is like terrible.

NLP’s practical applications

● Machine translation
● Sentiment Analysis
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

NLP’s practical applications

● Machine translation
● Sentiment Analysis
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

The author of our
book is Jurafsky!

the author of our
book is giraffe
ski

NLP’s practical applications

● Machine translation
● Sentiment Analysis
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

● Information Retrieval
○ Web Search
○ Question Answering

NLP’s practical applications

● Machine translation
● Sentiment Analysis
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

● Information Retrieval
○ Web Search
○ Question Answering

NLP’s practical applications

● Machine translation
● Sentiment Analysis
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

● Information Retrieval
○ Web Search
○ Question Answering

● Computational Social Science

NLP’s practical applications

● Machine translation
● Sentiment Analysis
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

● Information Retrieval
○ Web Search
○ Question Answering

● Computational Social Science

Schwartz, H. A., Eichstaedt, ... & Ungar. (2013). Personality, gender, and age in the
language of social media: The open-vocabulary approach. PloS one, 8(9).

NLP’s practical applications

Schwartz, H. A., Eichstaedt, ... & Ungar. (2013). Personality, gender, and age in the
language of social media: The open-vocabulary approach. PloS one, 8(9).

NLP’s practical applications

● Machine translation
● Sentiment Analysis
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

● Information Retrieval
○ Web Search
○ Question Answering

● Computational Social Science

NLP’s practical applications

● Machine translation
● Sentiment Analysis
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

● Information Retrieval
○ Web Search
○ Question Answering

● Computational Social Science

LLMs have enabled:
● Open-ended information tasks. e.g.

Editing emails
Summarizing areas of work
Question Answering
Counseling (not well validated)
…

NLP’s practical applications

LLMs have enabled:
● Open-ended information tasks. e.g.

Editing emails
Summarizing areas of work
Question Answering
Counseling (not well validated)
…

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

2018

2010

2003

1948

1980

~logarithmic scale

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4o

RoBERTA

DpSk-R1

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4o

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

DpSk-R1

NLP: The Coarse

web.stanford.edu/~jurafsky/slp3/

https://web.stanford.edu/~jurafsky/slp3/

Course Website - Syllabus

www3.cs.stonybrook.edu/~has/CSE538/

http://www3.cs.stonybrook.edu/~has/CSE538/

Ingredients for success

The following covers the major components of the course and the estimated
amount of time one might put into each if they are aiming to fully learn the
material.

➔ Review Quizzes: 20 minutes, once a week (start second week)

➔ Readings: 2.5 hours/wk; 12 - 25 pages/wk (best before each class)

➔ Study: 1 - 2 hours/wk to review notes and look up extra content

➔ Assignments (3): 8 to 15 hours each

➔ Get help early and be honest: For anything you struggle to understand, seek
office hours and extra learning suggestions.

Course Website - Syllabus

www3.cs.stonybrook.edu/~has/CSE538/

Grade % of class

A 30%

A- 10%

B+ 15%

B 15%

B- 10%

C+ 10%

C 5%

C- 4%

F 1%

Typical grade distribution:

http://www3.cs.stonybrook.edu/~has/CSE538/

CSE538 - Preliminaries

Regular Expressions - a means for efficiently processing strings or sequences.
Use case: A basic tokenizer

Probability - a measurement of how likely an event is to occur.
Use case: How likely is “force” to be a noun?

Tokenizing Words:
tokens - an individual word instance.
types - distinct words.

Words: Tokens and Types

CSE538 - Preliminaries

Regular Expressions - a means for efficiently processing strings or sequences.
Use case: A basic tokenizer

Probability - a measurement of how likely an event is to occur.
Use case: How likely is “force” to be a noun?

Tokenizing Words:
tokens - an individual word instance.
types - distinct words.

Words: Tokens and Types

How many word tokens and word types?

Will, will Will will Will Will's will?

Rose rose to put rose roes on her rows
of roses.

Regular Expressions

The unsung hero of NLP

Regular Expressions

Patterns to match in a string.

Example:

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

Regular Expressions

Patterns to match in a string.

character class: [] --matches any single character inside brackets

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’

Regular Expressions

Patterns to match in a string.

character class: [] --matches any single character inside brackets

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X

Regular Expressions

Patterns to match in a string.

character class: [] --matches any single character inside brackets

character ranges: [-] -- matches a range of characters according to ascii order

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X

[A-Z][a-z] ‘sbu’, ‘Sbu’ #capital followed by lowercase

[0-9][MmKk] ‘5m’, ‘50m’, ‘2k’, ‘2b’

Regular Expressions

Patterns to match in a string.

character class: [] --matches any single character inside brackets

character ranges: [-] -- matches a range of characters according to ascii order

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X

[A-Z][a-z] ‘sbu’, ‘Sbu’ #capital followed by lowercase ‘sbu’X, ‘Sbu’

[0-9][MmKk] ‘5m’, ‘50m’, ‘2k’, ‘2b’ ‘5m’, ‘50m’, ‘2k’, ‘2b’X

Regular Expressions

Patterns to match in a string.

character class: [] --matches any single character inside brackets
character ranges: [-] -- matches a range of characters according to ascii order
not characters: [^] -- matches any character except this

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X

[A-Z][a-z] ‘sbu’, ‘Sbu’ #capital followed by lowercase ‘sbu’X, ‘Sbu’

[0-9][MmKk] ‘5m’, ‘50m’, ‘2k’, ‘2b’ ‘5m’, ‘50m’X, ‘2k’, ‘2b’X

ing[^s] ‘kicking ’, ‘holdings ’, ‘ingles ’,
‘kicking’

Regular Expressions

Patterns to match in a string.

character class: [] --matches any single character inside brackets
character ranges: [-] -- matches a range of characters according to ascii order
not characters: [^] -- matches any character except this

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X

[A-Z][a-z] ‘sbu’, ‘Sbu’ #capital followed by lowercase ‘sbu’X, ‘Sbu’

[0-9][MmKk] ‘5m’, ‘50m’, ‘2k’, ‘2b’ ‘5m’, ‘50m’X, ‘2k’, ‘2b’X

ing[^s] ‘kicking ’, ‘holdings ’, ‘ingles ’,
‘kicking’

‘kicking ’, ‘holdings ’X, ‘ingles’,
‘kicking’X

Regular Expressions

Patterns to match in a string.

character class: [] --matches any single character inside brackets
character ranges: [-] -- matches a range of characters according to ascii order
not characters: [^] -- matches any character except this

pattern example strings matches

r’ing’ ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

r’[sS]bu’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X

r’[A-Z][a-z]’ ‘sbu’, ‘Sbu’ #capital followed by lowercase ‘sbu’X, ‘Sbu’

r’[0-9][MmKk]’ ‘5m’, ‘50m’, ‘2k’, ‘2b’ ‘5m’, ‘50m’, ‘2k’, ‘2b’X

r’ing[^s]' ‘kicking ’, ‘holdings ’, ‘ingles ’ ‘kicking ’, ‘holdings ’X, ‘ingles’

In python we denote regular expressions with:
r’PATTERN’

Regular Expressions

Matching recurring patterns:

* : match 0 or more
+ : match 1 or more

pattern example strings matches

r’ing!*’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’

r’[sS][oO]+’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, ‘soso’

Regular Expressions

Matching recurring patterns:

* : match 0 or more
+ : match 1 or more

pattern example strings matches

r’ing!*’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’X

r’[sS][oO]+’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, ‘soso’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’,
‘so’’so’ #would match twice

Regular Expressions

Matching recurring patterns:

* : match 0 or more
+ : match 1 or more
? : 0 or 1

pattern example strings matches

r’ing!*’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’X

r’[sS][oO]+’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, ‘soso’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’,
‘so’’so’ #would match twice

r’oranges?’ ‘orange’, ‘oranges’, ‘orangess’

Regular Expressions

Matching recurring patterns:

* : match 0 or more
+ : match 1 or more
? : 0 or 1

pattern example strings matches

r’ing!*’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’X

r’[sS][oO]+’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, ‘soso’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’,
‘so’’so’ #would match twice

r’oranges?’ ‘orange’, ‘oranges’, ‘orangess’ ‘orange’, ‘oranges’,
‘orangess’ #matches all it can

Regular Expressions

Patterns applied to groups of characters

AA|BB : matches group AA or group BB

pattern example strings matches

r’hers|his|theirs’’ ‘this is hers’, ‘this is his!’ ‘this is hers’, ‘this is his!’

Regular Expressions

Patterns applied to groups of characters

AA|BB : matches group AA or group BB
(AA) : apply any following operations to group

pattern example strings matches

r’hers|his’ ‘this is hers’, ‘this is his!’ ‘this is hers’, ‘this is his!’

r’([A-Z][a-z]+)+’ ‘This matches Cap Words followed
By a Space.’

Regular Expressions

Patterns applied to groups of characters

AA|BB : matches group AA or group BB
(AA) : apply any following operations to group

pattern example strings matches

r’hers|his’ ‘this is hers’, ‘this is his!’ ‘this is hers’, ‘this is his!’

r’([A-Z][a-z]+)+’ ‘This matches Cap Words followed
By a Space.’

‘This matches Cap Words_
followed By a Space.’

Regular Expressions

. : any single character

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’ ...

Regular Expressions

. : any single character
$: end of string

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’

.$ ‘great’, ‘great!’, ‘50’

Regular Expressions

. : any single character
$: end of string

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’

.$ ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’

Regular Expressions

. : any single character
$: end of string
^: beginning of string

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’

.$ ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’

^.a ‘Happy’, ‘slate’, ‘a’, ‘kick a door’

Regular Expressions

. : any single character
$: end of string
^: beginning of string

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’

.$ ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’

^.a ‘Happy’, ‘slate’, ‘a’, ‘kick a door’ ‘Happy’, ‘slate’, ‘a’X, ‘kick a door’

.a ‘Happy’, ‘slate’, ‘a’, ‘kick a door’ ‘Happy’, ‘slate’, ‘a’X, ‘kick a door’

Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

r’(\s|^)[A-z]+... ‘Kick a door.’

Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’

Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’ ‘Kick’ ‘ a’ ‘ door.’

Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’ ‘Kick’ ‘ a’ ‘ door.’

r’\b[A-z]+\b’ ‘Kick a door.’ ‘Kick', 'a', 'door'.’ #3 matches,
no whitespace

Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’ ‘Kick’ ‘ a’ ‘ door.’

r’\b[A-z]+\b’ ‘Kick a door.’ ‘Kick a door.’ #3 matches, no
whitespace

import re

words = re.findall(r'\b[A-z]+\b', sentence)

for word in words:

 print(word)

Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’ ‘Kick’ ‘ a’ ‘ door.’

r’\b[A-z]+\b’ ‘Kick a door.’ ‘Kick a door.’ #3 matches, no
whitespace

import re

words = re.split(r'\s', sentence)

for word in words:

 print(word)

Probability?

82

Probability?
1970 1980s 1990s 2000s 2010s 2020s

Rule-based and Logic Systems Statistical NLP Machine Learning Deep Learning LLMs
 (symbolic) (neural)

83

Review: What is Probability?

Examples

1. outcome of flipping a coin

2. side of a die

3. mentioning a word

4. mentioning a word “a lot”

84

What is Probability?

85

What is Probability?

The chance that something will happen.

Given infinite observations of an event, the proportion of observations where a
given outcome happens.

Strength of belief that something is true.

“Mathematical language for quantifying uncertainty” - Wasserman

86

What is Probability?

The chance that something will happen.

Given infinite observations of an event, the proportion of observations where a
given outcome happens. -- probability describes frequency in data

Strength of belief that something is true.
--probability describes amount of conviction toward a hypothesis

“Mathematical language for quantifying uncertainty” - Wasserman

87

Probability

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ

88

Probability

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ

1. P(Ω) = 1

2. P(A) ≥ 0 , for all A

If A1, A2, … are disjoint events then:

89

Probability

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ

P is a probability measure, if and only if

1. P(Ω) = 1

2. P(A) ≥ 0 , for all A

If A1, A2, … are disjoint events then:

90

Probability

Some Properties:

91

A
B

A B

A B

Probability

Some Properties:

1. If B ⊆ A then P(A) ≥ P(B)

92

A
B

A B

A B

Probability

Some Properties:

1. If B ⊆ A then P(A) ≥ P(B)

2. P(A ⋃ B) ≤ P(A) + P(B)

93

A
B

A B

A B

Probability

Some Properties:

1. If B ⊆ A then P(A) ≥ P(B)

2. P(A ⋃ B) ≤ P(A) + P(B)

3. P(A ⋂ B) ≤ min(P(A), P(B))

4. P(¬A) = P(Ω / A) = 1 - P(A)

/ is set difference

94

A
B

A B

A B

Probability

Some Properties:

1. If B ⊆ A then P(A) ≥ P(B)

2. P(A ⋃ B) ≤ P(A) + P(B)

3. P(A ⋂ B) ≤ min(P(A), P(B))

4. P(¬A) = P(Ω / A) = 1 - P(A)

/ is set difference
P(A ⋂ B) will be notated as P(A, B)

95

A
B

A B

A B

Probability

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?

96

Probability

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?

1. A: first flip of a fair coin; B: second flip of the same fair coin
2. A: sentence mentions (or not) the word “happy”

B: sentence mentions (or not) the word “birthday”

97

Probability

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?

1. A: first flip of a fair coin; B: second flip of the same fair coin
2. A: sentence mentions (or not) the word “happy”

B: sentence mentions (or not) the word “birthday”

Two events, A and B, are independent iff: P(A, B) = P(A)P(B)

98

Probability

Conditional Probability

 P(A, B)
P(A|B) = -------------
 P(B)

99

Probability

Conditional Probability

 P(A, B)
P(A|B) = -------------
 P(B)

100

“|” is often referred to as “given”:

“The probability of A given B is ...”

Probability

Conditional Probability

 P(A, B)
P(A|B) = -------------
 P(B)

Two events, A and B, are independent iff: P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(B|A) = P(B)

Interpretation of Independence:
Observing A has no effect on probability of B.
(Disjoint events, typically, are not independent!) 101

Probability

Conditional Probability

 P(A, B)
P(A|B) = -------------
 P(B)

Two events, A and B, are independent iff: P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(B|A) = P(B)

Interpretation of Independence:
Observing A has no effect on probability of B. (and vice-versa)

102

Independence example:

F1=H: first flip of a fair coin is heads
F2=H: second flip of the same coin is heads
P(F1=H) = 0.5 P(F2=H) = 0.5
P(F2=H, F1=H) = 0.25

Probability

Conditional Probability

 P(A, B)
P(A|B) = -------------
 P(B)

Two events, A and B, are independent iff: P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(B|A) = P(B)

Interpretation of Independence:
Observing A has no effect on probability of B. (and vice-versa)

103

Independence example:

F1=H: first flip of a fair coin is heads
F2=H: second flip of the same coin is heads
P(F1=H) = 0.5 P(F2=H) = 0.5
P(F2=H, F1=H) = 0.25

P(F2=H|F1=H) = 0.5 = P(H2)

Probability

Conditional Probability

 P(A, B)
P(A|B) = -------------
 P(B)

Two events, A and B, are independent iff: P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(B|A) = P(B)

Interpretation of Independence:
Observing A has no effect on probability of B. (and vice-versa)

104

Dependence example:

W1=happy: first word is “happy”
W2=birthday: second word is “birthday”

from observing language data, we find:
P(W1=happy) = 0.1, P(W2=birthday) = 0.05
P(W1=happy, W2=birthday) = 0.025

thus P(A, B) ≠ P(A)P(B)
also P(B|A) ≠ P(B):
 P(W2=birthday|W1=happy) = .025 / .1 = .25 ≠ 0.05 = P(W2=birthday)

Probability

Conditional Probability

 P(A, B)
P(A|B) = -------------
 P(B)

Two events, A and B, are independent iff: P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(B|A) = P(B)

Interpretation of Independence:
Observing A has no effect on probability of B. (and vice-versa)

105

Dependence example:

W1=happy: first word is “happy”
W2=birthday: second word is “birthday”

from observing language data, we find:
P(W1=happy) = 0.1, P(W2=birthday) = 0.05
P(W1=happy, W2=birthday) = 0.025

thus P(A, B) ≠ P(A)P(B)
also P(B|A) ≠ P(B):
 P(W2=birthday|W1=happy) = .025 / .1 = .25 ≠ 0.05 = P(W2=birthday)

A formality to make sense of the world.

1. To quantify uncertainty in language data.
Should we believe something or not? Is it a meaningful difference?

2. To be able to generalize from one situation to another.
Can we rely on some information? What is the chance Y happens?

3. To create structured data.
Where does X belong? What words are similar to X?
(necessary no matter what approaches take place)

Why Probability?

106

Why Probability?

A formality to make sense of the world.

1. To quantify uncertainty in language data.
Should we believe something or not? Is it a meaningful difference?

2. To be able to generalize from one situation to another.
Can we rely on some information? What is the chance Y happens?

3. To create structured data.
Where does X belong? What words are similar to X?
(necessary no matter what approaches take place)

107

Why Probability?

108

Words: Tokens and Types

word tokens - an individual word instance. (a list)

word types - distinct words. (a set)

V - "vocabulary" |V| - vocabulary size (number of types)

N - number of tokens

Words: Tokens and Types

word tokens - an individual word instance. (a list)

word types - distinct words. (a set)

V - "vocabulary" |V| - vocabulary size (number of types)

N - number of tokens

Corpus - a natural language dataset

 (i.e. observational data of word sequence in the wild!)

Words: Tokens and Types

word tokens - an individual word instance. (a list)

word types - distinct words. (a set)

V - "vocabulary" |V| - vocabulary size (number of types)

N - number of tokens

Corpus - a natural language dataset

 (i.e. observational data of word sequence in the wild!)

(SLP3, 2023)

Words: Tokens and Types

word tokens - an individual word instance. (a list)

word types - distinct words. (a set)

V - "vocabulary" |V| - vocabulary size (number of types)

N - number of tokens

Corpus - a natural language dataset

 (i.e. observational data of word sequence in the wild!)

(SLP3, 2023)

Herndon or
Heap's Law:

Tokenizers

1.

2.

3.

Tokenizers

1. Word Tokenizers

2.

3.

Tokenizers

1. Word Tokenizers

2.

3.

import re

def tokenize(sentence):

tokens = re.split(r'\s', sentence)

return tokens

Tokenizers

1. Word Tokenizers

a. nltk's TreebankWordTokenizer

b. DLATK's happierfuntokenizing.py (latest version)

2.

3.

import re

def tokenize(sentence):

tokens = re.split(r'\s', sentence)

return tokens

https://www.nltk.org/api/nltk.tokenize.TreebankWordTokenizer.html#nltk.tokenize.TreebankWordTokenizer
https://github.com/dlatk/happierfuntokenizing
https://github.com/dlatk/dlatk/blob/public/dlatk/lib/happierfuntokenizing.py

Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding

3.

Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding

Motivations:

– more data-driven; no predefined words or rules

– allow for subwords (e.g. "unlikeliest" -> "un", "like", "liest") – better for

unseen words or capturing semantics of parts of words.

3.

Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding

Motivations:

– more data-driven; no predefined words or rules

– allow for subwords (e.g. "unlikeliest" -> "un", "like", "liest") – better for

unseen words or capturing semantics of parts of words.

3.

(Bostrum & Durrett, 2020)

https://aclanthology.org/2020.findings-emnlp.414.pdf

Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding

Motivations:

– more data-driven; no predefined words or rules

– allow for subwords (e.g. "unlikeliest" -> "un", "like", "liest") – better for

unseen words or capturing semantics of parts of words.

3.

(Bostrum & Durrett, 2020)

(SLP3, p.18)

l o w _
l o w _
l o w _
l o w _
l o w _

l o w e s t _
l o w e s t _
n e w e r _
n e w e r _
n e w e r _

n e w e r _
n e w e r _
n e w e r _
w i d e r _
w i d e r _

w i d e r _
n e w _
n e w _

https://aclanthology.org/2020.findings-emnlp.414.pdf

Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding

Motivations:

– more data-driven; no predefined words or rules

– allow for subwords (e.g. "unlikeliest" -> "un", "like", "liest") – better for

unseen words or capturing semantics of parts of words.

3.

(SLP3, p.18) (SLP3, p.19)

(original)

(3 iterations later)

(Bostrum & Durrett, 2020)

l o w _
l o w _
l o w _
l o w _
l o w _

l o w e s t _
l o w e s t _
ne w er_
ne w er_
ne w e r _

ne w er_
ne w er_
ne w er_
w i d er_
w i d er_

w i d er_
ne w _
ne w _

https://aclanthology.org/2020.findings-emnlp.414.pdf

Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding

3. Wordpiece

Choose pairings based on what increases likelihood of data.

Does putting "a" and "b" together increase ability to model the corpus?

This can be quantified by: p('ab')

 p('a')p('b')

More here: (Shuster and Nakajima, 2012; Kudo and Richardson, 2018)

https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf
https://aclanthology.org/D18-2012/

