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Colorless purple ideas sleep furiously. (Chomsky, 1956; “purple”=> “green”)

Fruit flies like a banana.       Time flies like an arrow.

Daddy what did you bring that book that I don’t want to be 
read to out of up for?

(Pinker, 1994)

More empathy for the computer...
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NLP’s 0ld grand goal: completely understand natural language.
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NLP’s practical applications

● Machine translation

The spirit is willing, but the flesh is weak.

English -> Russian -> English

The vodka is good, but the meat is rotten.

(Garbade, 2018)
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Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant. 
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NLP: The Coarse



web.stanford.edu/~jurafsky/slp3/

https://web.stanford.edu/~jurafsky/slp3/


Course Website - Syllabus

www3.cs.stonybrook.edu/~has/CSE538/

http://www3.cs.stonybrook.edu/~has/CSE538/


Ingredients for success

The following covers the major components of the course and the estimated 
amount of time one might put into each if they are aiming to fully learn the 
material.

➔ Review Quizzes: 20 minutes, once a week (start second week)

➔ Readings: 2.5 hours/wk; 12 - 25 pages/wk (best before each class)

➔ Study: 1 - 2 hours/wk to review notes and look up extra content

➔ Assignments (3): 8 to 15 hours each

➔ Get help early and be honest: For anything you struggle to understand, seek 
office hours and extra learning suggestions.



Course Website - Syllabus

www3.cs.stonybrook.edu/~has/CSE538/

Grade % of class

A 30%

A- 10%

B+ 15%

B 15%

B- 10%

C+ 10%

C 5%

C- 4%

F 1%

Typical grade distribution:

http://www3.cs.stonybrook.edu/~has/CSE538/




CSE538 - Preliminaries

Regular Expressions - a means for efficiently processing strings or sequences.
Use case: A basic tokenizer

Probability - a measurement of how likely an event is to occur. 
Use case: How likely is “force” to be a noun? 

Tokenizing Words: 
tokens - an individual word instance.
types - distinct words. 

Words: Tokens and Types



CSE538 - Preliminaries

Regular Expressions - a means for efficiently processing strings or sequences.
Use case: A basic tokenizer

Probability - a measurement of how likely an event is to occur. 
Use case: How likely is “force” to be a noun? 

Tokenizing Words: 
tokens - an individual word instance.
types - distinct words. 

Words: Tokens and Types

How many word tokens and word types?

Will, will Will will Will Will's will? 

Rose rose to put rose roes on her rows 
of roses.



Regular Expressions

The unsung hero of NLP
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pattern example strings matches
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Patterns to match in a string. 
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Regular Expressions

Patterns to match in a string. 

character class: []  --matches any single character inside brackets
character ranges: [ - ]  -- matches a range of characters according to ascii order
not characters: [^ ] -- matches any character except this

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X
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‘kicking’X



Regular Expressions

Patterns to match in a string. 

character class: []  --matches any single character inside brackets
character ranges: [ - ]  -- matches a range of characters according to ascii order
not characters: [^ ] -- matches any character except this

pattern example strings matches

r’ing’ ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

r’[sS]bu’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X

r’[A-Z][a-z]’ ‘sbu’, ‘Sbu’ #capital followed by lowercase ‘sbu’X, ‘Sbu’

r’[0-9][MmKk]’ ‘5m’, ‘50m’, ‘2k’, ‘2b’ ‘5m’, ‘50m’, ‘2k’, ‘2b’X

r’ing[^s]' ‘kicking ’, ‘holdings ’, ‘ingles ’ ‘kicking ’, ‘holdings ’X, ‘ingles’

In python we denote regular expressions with: 
r’PATTERN’



Regular Expressions

Matching recurring patterns:

* : match 0 or more 
+ : match 1 or more 

pattern example strings matches

r’ing!*’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’

r’[sS][oO]+’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, ‘soso’
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Regular Expressions

Matching recurring patterns:

* : match 0 or more 
+ : match 1 or more 
? : 0 or 1

pattern example strings matches

r’ing!*’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’X

r’[sS][oO]+’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, ‘soso’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, 
‘so’’so’ #would match twice

r’oranges?’ ‘orange’, ‘oranges’, ‘orangess’



Regular Expressions

Matching recurring patterns:

* : match 0 or more 
+ : match 1 or more 
? : 0 or 1

pattern example strings matches

r’ing!*’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘!!!’X

r’[sS][oO]+’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, ‘soso’ ‘so’, ‘sooo’, ‘SOOoo’, ‘so!’, 
‘so’’so’ #would match twice

r’oranges?’ ‘orange’, ‘oranges’, ‘orangess’ ‘orange’, ‘oranges’, 
‘orangess’ #matches all it can



Regular Expressions

Patterns applied to groups of characters

AA|BB : matches group AA or group BB

pattern example strings matches

r’hers|his|theirs’’ ‘this is hers’, ‘this is his!’ ‘this is hers’, ‘this is his!’
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AA|BB : matches group AA or group BB
(AA) : apply any following operations to group

pattern example strings matches
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r’([A-Z][a-z]+ )+’ ‘This matches Cap Words followed 
By a Space.’



Regular Expressions

Patterns applied to groups of characters

AA|BB : matches group AA or group BB
(AA) : apply any following operations to group

pattern example strings matches

r’hers|his’ ‘this is hers’, ‘this is his!’ ‘this is hers’, ‘this is his!’

r’([A-Z][a-z]+ )+’ ‘This matches Cap Words followed 
By a Space.’

‘This matches Cap Words_ 
followed By a Space.’



Regular Expressions

. : any single character

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’ ...



Regular Expressions

. : any single character
$ : end of string

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’ 

.$ ‘great’, ‘great!’, ‘50’



Regular Expressions

. : any single character
$ : end of string

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’ 

.$ ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’



Regular Expressions

. : any single character
$ : end of string
^: beginning of string

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’ 

.$ ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’

^.a ‘Happy’, ‘slate’, ‘a’, ‘kick a door’



Regular Expressions

. : any single character
$ : end of string
^: beginning of string

pattern example strings matches

. ‘kicking’ ‘k’ ‘i’ ‘c’ ‘k’ 

.$ ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’

^.a ‘Happy’, ‘slate’, ‘a’, ‘kick a door’ ‘Happy’, ‘slate’, ‘a’X, ‘kick a door’

.a ‘Happy’, ‘slate’, ‘a’, ‘kick a door’ ‘Happy’, ‘slate’, ‘a’X, ‘kick a door’



Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words). 
Here are a couple simple regular expressions for tokenizing: 

pattern example strings matches

r’(\s|^)[A-z]+... ‘Kick a door.’
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Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words). 
Here are a couple simple regular expressions for tokenizing: 

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’ ‘Kick’ ‘ a’ ‘ door.’



Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words). 
Here are a couple simple regular expressions for tokenizing: 

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’ ‘Kick’ ‘ a’ ‘ door.’ 

r’\b[A-z]+\b’ ‘Kick a door.’ ‘Kick', 'a',  'door'.’ #3 matches, 
no whitespace



Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words). 
Here are a couple simple regular expressions for tokenizing: 

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’ ‘Kick’ ‘ a’ ‘ door.’ 

r’\b[A-z]+\b’ ‘Kick a door.’ ‘Kick a door.’ #3 matches, no 
whitespace

import re

words = re.findall(r'\b[A-z]+\b', sentence)

for word in words:

    print(word)



Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words). 
Here are a couple simple regular expressions for tokenizing: 

pattern example strings matches

r’(\s|^)[A-z]+([!\?\.]|$)?’ ‘Kick a door.’ ‘Kick’ ‘ a’ ‘ door.’ 

r’\b[A-z]+\b’ ‘Kick a door.’ ‘Kick a door.’ #3 matches, no 
whitespace

import re

words = re.split(r'\s', sentence)

for word in words:

    print(word)
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Probability?
1970 1980s 1990s 2000s 2010s 2020s

Rule-based and Logic Systems Statistical NLP        Machine Learning     Deep Learning    LLMs
   (symbolic)                                                                                                (neural)
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Review: What is Probability?

Examples

1. outcome of flipping a coin

2. side of a die

3. mentioning a word

4. mentioning a word “a lot”

84



What is Probability?

85



What is Probability?

The chance that something will happen. 

Given infinite observations of an event, the proportion of observations where a 
given outcome happens. 

Strength of belief that something is true.

“Mathematical language for quantifying uncertainty” - Wasserman

86



What is Probability?

The chance that something will happen. 

Given infinite observations of an event, the proportion of observations where a 
given outcome happens.  -- probability describes frequency in data

Strength of belief that something is true.  
--probability describes amount of conviction toward a hypothesis

“Mathematical language for quantifying uncertainty” - Wasserman

87



Probability

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ
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2. P(A) ≥ 0 , for all A
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Probability

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ

P is a probability measure, if and only if

1. P(Ω) = 1

2. P(A) ≥ 0 , for all A

If A1, A2, … are disjoint events then:

90



Probability

Some Properties:
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Probability

Some Properties:

1. If B ⊆ A then P(A) ≥ P(B) 
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Some Properties:

1. If B ⊆ A then P(A) ≥ P(B) 

2. P(A ⋃ B) ≤ P(A) + P(B)
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Probability

Some Properties:

1. If B ⊆ A then P(A) ≥ P(B) 

2. P(A ⋃ B) ≤ P(A) + P(B)

3. P(A ⋂ B) ≤ min(P(A), P(B))

4. P(¬A) = P(Ω / A) = 1 - P(A)

/ is set difference
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Probability

Some Properties:

1. If B ⊆ A then P(A) ≥ P(B) 

2. P(A ⋃ B) ≤ P(A) + P(B)

3. P(A ⋂ B) ≤ min(P(A), P(B))

4. P(¬A) = P(Ω / A) = 1 - P(A)

/ is set difference
P(A ⋂ B) will be notated as P(A, B)

95
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Probability

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?

96



Probability 

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?

1. A: first flip of a fair coin; B: second flip of the same fair coin
2. A: sentence mentions (or not) the word “happy”

B: sentence mentions (or not) the word “birthday”
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Probability 

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?

1. A: first flip of a fair coin; B: second flip of the same fair coin
2. A: sentence mentions (or not) the word “happy”

B: sentence mentions (or not) the word “birthday”

Two events, A and B, are independent iff:    P(A, B) = P(A)P(B)
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Probability 

Conditional Probability

                 P(A, B)
P(A|B) =  -------------
                    P(B)
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Probability 

Conditional Probability

                 P(A, B)
P(A|B) =  -------------
                    P(B)

100

“|” is often referred to as “given”:

“The probability of A given B is ...”



Probability 

Conditional Probability
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Independence example: 

F1=H: first flip of a fair coin is heads
F2=H: second flip of the same coin is heads
P(F1=H) = 0.5 P(F2=H) = 0.5
P(F2=H, F1=H) = 0.25
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Dependence example: 

W1=happy: first word is “happy”
W2=birthday: second word is “birthday”

from observing language data, we find: 
P(W1=happy) = 0.1, P(W2=birthday) = 0.05 
P(W1=happy, W2=birthday) = 0.025

thus P(A, B) ≠ P(A)P(B) 
also P(B|A) ≠ P(B): 
  P(W2=birthday|W1=happy) = .025 / .1 = .25 ≠ 0.05 = P(W2=birthday)
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A formality to make sense of the world. 

1. To quantify uncertainty in language data.
Should we believe something or not? Is it a meaningful difference?

2. To be able to generalize from one situation to another. 
Can we rely on some information? What is the chance Y happens?

3. To create structured data. 
Where does X belong? What words are similar to X?
(necessary no matter what approaches take place)

Why Probability?
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Herndon or 
Heap's Law:
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Tokenizers

1. Word Tokenizers

a. nltk's TreebankWordTokenizer 

b. DLATK's happierfuntokenizing.py (latest version)

2.

 

3.  

import re

def tokenize(sentence):

tokens = re.split(r'\s', sentence)

return tokens

https://www.nltk.org/api/nltk.tokenize.TreebankWordTokenizer.html#nltk.tokenize.TreebankWordTokenizer
https://github.com/dlatk/happierfuntokenizing
https://github.com/dlatk/dlatk/blob/public/dlatk/lib/happierfuntokenizing.py
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(original)

(3 iterations later)
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Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding

 

3. Wordpiece

Choose pairings based on what increases likelihood of data. 

Does putting "a" and "b" together increase ability to model the corpus? 

This can be quantified by: p('ab') 

                                              -----------

                                             p('a')p('b')

More here: (Shuster and Nakajima, 2012; Kudo and Richardson, 2018)

https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf
https://aclanthology.org/D18-2012/



