Natural Language Processing:
Introduction and Preliminaries

CSES38 - Spring 2025
Instructor: H. Andrew Schwartz



. Computers and Natural Language

. Goal of NLP

. Course Overview

Fundamentals Review
a. Regular Expressions
b. Probability Theory

. Words and Corpora
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the horse raced past the barn.
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Moct of modern NLP language understanding works by simply
analyzing the patterns of language without any external knowledge.
(over macsive datasets and very large models)
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> 7 words? Likely a unique sequence

Moct of modern NLP language understanding works by simply

analyzing the patterns of language without any external knowledge.
(over macsive datasets and very large models)



Natural language is complicated!



Natural language is complicated!
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Natural language is complicated!




Natural language is complicated!




What is natural language like for a computer?

The horse raced past the barn.




What is natural language like for a computer?

The horse raced past the barn.

The horse raced past the barn fell.
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What is natural language like for a computer?

The horse raced past the barn. /
The horse raced past the barn fell. /
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What is natural language like for a computer?

The horse raced past the barn. /
The horse raced past the barn fell. /

The horse runs past the barn. /

The horse runs past the barn fell.



What is natural language like for a computer?

The horse raced past the barn. /
The horse raced past the barn fell./
N
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The horse runs past the barn. /

The horse runs past the barn fell.
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Colorless purple Ideas Sleep furiously. (Chomsky, 1956; “purple”=> “green”)

More empathy for the computer...




More empathy for the computer...

Colorless purple Ideas Sleep furiously. (Chomsky, 1956; “purple”=> “green”)
Fruit flies like a banana. Time flies like an arrow.

Daddy what did you bring that book that | don’t want to be

read to out of up for?
(Pinker, 1994)



More empathy for the computer... (V) [

She ate the cake with the frosting. T
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More empathy for the computer... (V) [

She ate the cake with the frosting. T

[[She’, ‘ate’, X, ‘with’, VY, “.’°]



|

More empathy for the computer... (V) [

She ate the cake with the frosting. T

[[She’, ‘ate’, X, ‘with’, VY, “.’°]
=> Y 1s a part of X



More empathy for the computer...

She ate the cake with the frosting. T

She ate the cake with the fork.

[[She’, ‘ate’, X, ‘with’, VY, .’°]
=> Y 1s a wart of X
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More empathy for the computer... (V) [

She ate the cake with the frosting. T

She ate the cake with the fork.




More empathy for the computer... (V) [

She ate the cake with the frosting. T

She ate the cake with the fork.

He walked along the port next to the ship.



More empathy for the computer...

She ate the cake with the frosting. T

She ate the cake with the fork.

He put the port on the ship.
He walked along the port of the ship.
He walked along the port next to the ship.






NLP’s Old grand goal: completely understand natural language.




NLP’s practical applications <circa 2021>

e Machine translation



NLP’s practical applications

e Machine translation

The spirit is willing, but the flesh is weak.
English -> Russian -> English

The vodka is good, but the meat is rotten.

(Garbade, 2018)



NLP’s practical applications

e Machine translation
e Sentiment Analysis



NLP’s practical applications

e Machine translation

e Sentiment Analysis
[ like the the movie. The movie is like terrible.



NLP’s practical applications

e Machine translation

e Sentiment Analysis

e Automatic speech recognition
o Personalized assistants
o Auto customer service



NLP’s practical applications

The author of our

book is Jurafsky!

Machine translation
Sentiment Analysis
Automatic speech recognition
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NLP’s practical applications

e Machine translation
e Sentiment Analysis
e Automatic speech recognition
o Personalized assistants
o Auto customer service
e [nformation Retrieval
o Web Search
o Question Answering



NLP’s practical applications

e Machine translation
e Sentiment Analysis
e Automatic speech recognition
o Personalized assistants
o Auto customer service
e [nformation Retrieval
o Web Search
o Question Answering
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NLP’s practical applications

e Machine translation

e Sentiment Analysis

e Automatic speech recognition
o Personalized assistants
o Auto customer service

e [nformation Retrieval
o Web Search
o Question Answering

e Computational Social Science



NLP’s practical applications

e Machine translation day yall mE
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e Automatic speech recognition dombestle ladies
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e |nformation Retrieval | Svin
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o Web Search faran-amazing her SO0
o Question Answering last n,ght Ty t
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Schwartz, H. A., Eichstaedt, ... & Ungar. (2013). Personality, gender, and age in the missin on Irt';):g‘é"::]g love_u

language of social media: The open-vocabulary approach. PloS one, 8(9). tanning



NLP’s practical applications
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NLP’s practical applications

e Machine translation

e Sentiment Analysis

e Automatic speech recognition
o Personalized assistants
o Auto customer service

e [nformation Retrieval
o Web Search
o Question Answering

e Computational Social Science



NLP’s practical applications

e Machine translation
e Sentiment Analysis

e Automatic speech recognition LLMs have enabled:
o Personalized as&stgnts e Open-ended information tasks. e.g.
o Auto customer service
e Information Retrieval Editing emails
o Web S_earch . Summarizing areas of work
o Question Answering Question Answering

e Computational Social Science Counseling (not well validated)



What do people use generative text Al tools to do?
% of US adults selecting each reason

Additional Income —:I 3.3%

For Mental Health Assistance ] 4%

Social Connection :I 5%

To Create Content for Social Media 6.8%

Other 8.1%

For School 10.3%

To Gather Health Information 10.6%

To Help with Creative Pursuits 12.7%

For Assistance on Personal Tasks 18.7%

s have enabled:
Open-ended information tasks. e.g.

To Improve Communications 26%

To Learn Something New 27.3%

Entertainment 35.4%

Editing emails

Summarizing areas of work
Crbslyy Question Answering
Counseling (not well validated)

For Work 36.8%




Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
‘. Shannon: A Mathematical Theory of Communication (first digital language model)

Jelinek et al. (IBM): Language Models for Speech Recognition

Language Models
Vector Semantics
m LMs + Vectors

~logarithmic scale



Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948

Osgood: The
Measurement
of Meaning

Switzer: Vector
Space Models

Language Models
Vector Semantics
m LMs + Vectors

~logarithmic scale

Jelinek et al. (IBM): Language Models for Speech Recognition

. ./.L<annon: A Mathematical Theory of Communication (first digital language model)

19
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Indexing by Latent
Semantic Analysis

(LSA)

Bengio:
Neural-net
based
embeddings
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Mikolov: word2vec

2018




Timeline: Language Modeling and Vector Semantics
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Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
1948

el Shannon: A Mathematical Theory of Communication (first digital language model)
K Jelinek et al. (IBM): Language Models for Sneech Recognition

19

Osgood: The Brown et al.: Class-based ngrai Ehre\'sed(oz similar”) are
Measurement 2003 natural language [atkabinis most a
) state-of-the-art
of Meaning
ISRV WG]e modern NLP systems
. Deerwater: 2010
switzer: Vector Indexing by Latent Mikolov: word2vec
Space Models . :
Semantic Analysis ELMO
Iy 2018
(LSA) : Collobert and
Bengio: N PT
B Language Models Neural-net Weston: A unified ______ROBERTA
B Vector Semantics based architecture for

. natural language  BERT DpSk-R1
. . embeddings processing: Deep
logarithmic scale neural networks... GPT4o

m LMs + Vectors



NLP: The Coarse



Speech and Language Processing

An Introduction to Natural Language Processing,

Computational Linguistics, and Speech Recognition
with Language Models

Third Edition draft

Daniel Jurafsky

Stanford University

James H. Martin
University of Colorado at Boulder

Copyright ©2024. All rights reserved.

Draft of January 12, 2025. |Comments and typos welcome!



https://web.stanford.edu/~jurafsky/slp3/

Course Website - Syllabus

wwwa3.cs.stonybrook.edu/~has/CSE538/



http://www3.cs.stonybrook.edu/~has/CSE538/

Ingredients for success

The following covers the major components of the course and the estimated
amount of time one might put into each if they are aiming to fully learn the
material.

e 2

 JS Z

Review Quizzes: 20 minutes, once a week (start second week)
Readings: 2.5 hours/wk; 12 - 25 pages/wk (best before each class)
Study: 1 - 2 hours/wk to review notes and look up extra content
Assignments (3): 8 to 15 hours each

Get help early and be honest: For anything you struggle to understand, seek
office hours and extra learning suggestions.



COurse Website - Sy”abus Typical grade distribution:

Grade % of class

A 30%
A- 10%
B+ 15%
B 15%
wwwa3.cs.stonybrook.edu/~has/CSE538/ B- 10%
C+ 10%
C 5%
C- 4%

F 1%


http://www3.cs.stonybrook.edu/~has/CSE538/




CSE538 - Preliminaries

Regular Expressions - a means for efficiently processing strings or sequences.
Use case: A basic tokenizer

Probability - a measurement of how likely an event is to occur.
Use case: How likely is “force” to be a noun?

Tokenizing Words:
tokens - an individual word instance.
types - distinct words.



CSE538 - Preliminaries

Regular Expressions - a means for efficiently processing strings or sequences.
Use case: A basic tokenizer

Probability - a measurement of how likely an event is to occur.
Use case: How likely is “force” to be a noun?

How many word tokens and word ty,be:'?

Tokenizing Words: Will, will Will will Will Will'e will?
tokens - an individual word instance.

types - distinct words. Roce rose to put rose roec on her rows

of rocecs.




Regular Expressions

The unsung hero of NLP




Regular Expressions

Patterns to match in a string.

Example:

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X




Regular Expressions

Patterns to match in a string.

character class: [| --matches any single character inside brackets

pattern

example strings

matches

ing

‘kicking’, ‘ingles’, ‘class’

‘kicking’, ‘ingles’, ‘class’X

[sS]bu

‘sbu’, ‘I like Sbu a lot’, ‘SBU’




Regular Expressions

Patterns to match in a string.

character class: [| --matches any single character inside brackets

pattern

example strings

matches

ing

‘kicking’, ‘ingles’, ‘class’

‘kicking’, ‘ingles’, ‘class’X

[sS]bu

‘sbu’, ‘I like Sbu a lot’, ‘SBU’

‘'sbu’, ‘I like Sbu a lot’, ‘SBU’X




Regular Expressions

Patterns to match in a string.
character class: [| --matches any single character inside brackets

character ranges: [ - ] -- matches a range of characters according to ascii order

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X
[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘'sbu’, ‘I like Sbu a lot’, ‘SBU’X
[A-Z][a-Z] ‘'sbu’, ‘Sbu’ #capital followed by lowercase

[0-9][MmKK] | ‘5m’, ‘50m’, ‘2Kk’, ‘2b’




Regular Expressions

Patterns to match in a string.
character class: [| --matches any single character inside brackets

character ranges: [ - ] -- matches a range of characters according to ascii order

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X
[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘'sbu’, ‘I like Sbu a lot’, ‘SBU’X
[A-Z][a-Z] ‘'sbu’, ‘Sbu’ #capital followed by lowercase | ‘sbu’X, ‘Sbu’

[0-9][MmKK] | ‘5m’, ‘50m’, ‘2Kk’, ‘2b’ ‘5m’, ‘50m’, ‘2k’, ‘2b’X




Regular Expressions

Patterns to match in a string.

character class: [| --matches any single character inside brackets
character ranges: [ -] -- matches a range of characters according to ascii order
not characters: [* ] -- matches any character except this

pattern example strings matches
ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X
[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘'sbu’, ‘I like Sbu a lot’, ‘SBU’X
[A-Z][a-Z] ‘'sbu’, ‘Sbu’ #capital followed by lowercase | ‘sbu’X, ‘Sbu’
[0-9][MmKK] | ‘5m’, ‘50m’, ‘2Kk’, ‘2b’ ‘sm’, ‘50m’X, 2k’, ‘2b’X
ing["s] ‘kicking ’, ‘holdings ’, ‘ingles ’,

‘kicking’




Regular Expressions

Patterns to match in a string.

character class: [| --matches any single character inside brackets
character ranges: [ -] -- matches a range of characters according to ascii order
not characters: [* ] -- matches any character except this

pattern example strings matches

ing ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X

[sS]bu ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’X

[A-Z][a-Z] ‘'sbu’, ‘Sbu’ #capital followed by lowercase | ‘sbu’X, ‘Sbu’

[0-9][MmKK] | ‘5m’, ‘50m’, ‘2K’, ‘2b’ ‘sm’, ‘50m’X, ‘2k’, ‘2b’X

ing[s] ‘kicking ’, ‘holdings ’, ‘ingles ’, ‘kicking ', ‘holdings X, ‘ingles’,
‘kicking’ ‘kicking’X




Regular Expressions

In python we denote regular expressions with:
rPATTERN’

character re=-
not characterg

EPPaing to ascii order
grcenes any character except this

pattern example strings matches

r'ing’ ‘kicking’, ‘ingles’, ‘class’ ‘kicking’, ‘ingles’, ‘class’X
r'[sS]bu’ ‘sbu’, ‘I like Sbu a lot’, ‘SBU’ ‘'sbu’, ‘I like Sbu a lot’, ‘SBU’X
r'[A-Z][a-z] ‘'sbu’, ‘Sbu’ #capital followed by lowercase | ‘sbu’X, ‘Sbu’

r'[0-9][MmKkK] | ‘5m’, ‘50m’, ‘2k’, ‘2b’ ‘5m’, ‘50m’, ‘2k’, ‘2b’X
r'ing[*s]' ‘kicking ’, ‘holdings ’, ‘ingles’ ‘kicking ’, ‘holdings ’X, ‘ingles’




Regular Expressions

Matching recurring patterns:

* match 0 or more
+ : match 1 or more

pattern example strings

matches

r'ing!™ ‘'swing’, ‘swing!” ‘swing!!l” ‘I’

r'[sS][oO]+’ ‘'so’, 'soo0’, ‘'SO000’, ‘so!’, ‘soso’




Regular Expressions

Matching recurring patterns:

* match 0 or more
+ : match 1 or more

pattern example strings matches

r'ing!™ 'swing’, ‘swing!’ ‘swing!!l" ‘I’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘lII’X

r'[sS][oO]+ ‘'so’, ‘soo0’, ‘SO000’, ‘so!’, ‘soso’ 's0’, 's000’, 'SO000), ‘so!,
‘s0”’s0’ #would match twice




Regular Expressions

Matching recurring patterns:

* match 0 or more
+ : match 1 or more

?:00r1
pattern example strings matches
ring!™ 'swing’, ‘swing!” ‘swing!!!” ‘NI’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘11’X
r'[sS][oO]+’ ‘'s0’, ‘'s000’, ‘SO000’, ‘so!’, ‘soso’ 's0’, ‘'so00’, 'SO000), ‘so!,
‘s0”’s0’ #would match twice
r'oranges?’ ‘orange’, ‘oranges’, ‘orangess’




Regular Expressions

Matching recurring patterns:

* match 0 or more
+ : match 1 or more

?:00r1
pattern example strings matches
ring!™ 'swing’, ‘swing!” ‘swing!!!” ‘NI’ ‘swing’, ‘swing!’ ‘swing!!!’ ‘11’X
r'[sS][oO]+’ ‘'s0’, ‘'s000’, ‘SO000’, ‘so!’, ‘soso’ 's0’, ‘'so00’, 'SO000), ‘so!,
‘s0”’s0’ #would match twice
r‘oranges?’ ‘orange’, ‘oranges’, ‘orangess’ ‘orange’, ‘oranges’,

‘orangess’ #matches all it can




Regular Expressions

Patterns applied to groups of characters

AA|BB : matches group AA or group BB

pattern

example strings

matches

r’hers|his|theirs”

‘this is hers’, ‘this is his!’

‘this is hers’, ‘this is his!




Regular Expressions

Patterns applied to groups of characters

AA|BB : matches group AA or group BB
(AA) : apply any following operations to group

pattern example strings matches

r’hers|his’ ‘this is hers’, ‘this is his!’ ‘this is hers’, ‘this is his!’

r'([A-Z][a-z]+ )+ | ‘This matches Cap Words followed
By a Space.’




Regular Expressions

Patterns applied to groups of characters

AA|BB : matches group AA or group BB
(AA) : apply any following operations to group

pattern example strings matches

r’hers|his’ ‘this is hers’, ‘this is his!’ ‘this is hers’, ‘this is his!’

r'([A-Z][a-z]+ )+ | “This matches Cap Words followed | ‘This matches Cap Words

By a Space.’ followed By a Space.’




Regular Expressions

. . any single character

pattern

example strings

matches

‘kicking’

‘K, ‘i, ‘g’ ‘K’ .




Regular Expressions

. . any single character
$ : end of string

pattern example strings matches
‘kiCking! ik! ‘i, (g’ ‘K’
5 ‘great’, ‘great!’, ‘50’




Regular Expressions

. . any single character
$ : end of string

pattern example strings matches
‘kiCking! ‘K’ ‘i, ig’ ‘K’
5 ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’




Regular Expressions

. . any single character
$ : end of string
A beginning of string

pattern example strings matches

‘kicking’ ‘KT ‘c’ 'k’
5 ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’
Aa ‘Happy’, ‘slate’, ‘a’, ‘kick a door’




Regular Expressions

. . any single character
$ : end of string
A beginning of string

pattern example strings matches
‘kicking’ ‘K I''c 'k
5 ‘great’, ‘great!’, ‘50’ ‘great’, ‘great!’, ‘50’
A a ‘Happy’, ‘slate’, ‘a’, ‘kick a door’ ‘Happy’, ‘slate’, ‘a’X, ‘kick a door’
a ‘Happy’, ‘slate’, ‘a’, ‘kick a door’ ‘Happy’, ‘slate’, ‘a’X, ‘kick_a door’




Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

r’'(\s|M)[A-z]+... ‘Kick a door.’




Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

r'(\s|M)[A-z]+("\?\.]|$)?" | ‘Kick a door.’




Regular Expressions

\s : matches any whitespace (space, tab, newline)
\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches

P (\s|M[A-z]+([\?\.]|$)?’ | ‘Kick a door. ‘Kick’ * @’ * door.




Regular Expressions

\s : matches any whitespace (space, tab, newline)

\b : matches a word boundary

Tokenizing -- breaking a sentence into simple lexical units (basically words).
Here are a couple simple regular expressions for tokenizing:

pattern example strings matches
r'(\s|M[A-z]+(["\?\.]|$)?’ | ‘Kick a door.’ ‘Kick’ ‘a’ ‘door.’
r'\b[A-z]+\b’ ‘Kick a door.’ ‘Kick', 'a’, 'door'.’ #3 matches,

no whitespace




Regular Expressions

import re

words = re.findall(r'\b[A-z]+\b', sentence)

for word in words:

print(word)
pattern example strings matches
r'(\s|M[A-z]+(["\?\.]|$)?’ | ‘Kick a door.’ ‘Kick’ ‘a’ “ door.’
r'\b[A-z]+\b’ ‘Kick a door.’ ‘Kick a door.” #3 matches, no

whitespace




Regular Expressions

import re

words = re.split(r'\s’', sentence)

for word in words:

print(word)
pattern example strings matches
r'(\s|M[A-z]+(["\?\.]|$)?’ | ‘Kick a door.’ ‘Kick’ ‘a’ “ door.’
r'\b[A-z]+\b’ ‘Kick a door.’ ‘Kick a door.” #3 matches, no
whitespace




Probability



Probability

1970 1980s 1990s 2000s 2010s 2020s

Rule-based and (ogic Systems Statictical NLP Machine (earning  Deep Learning ((Mg
(cymbolic)




Review: What is Probability?

Examples

1. outcome of flipping a coin
2. side of a die
3. mentioning a word

4. mentioning a word “a lot”



What is Probability?



What is Probability?

The chance that something will happen.

Given infinite observations of an event, the proportion of observations where a
given outcome happens.

Strength of belief that something is true.

“Mathematical language for quantifying uncertainty” - Wasserman



What is Probability?

The chance that something will happen.

Given infinite observations of an event, the proportion of observations where a
given outcome happens. -- probability describec frequency in data

Strength of belief that something is true.
--probability describee amount of conviction foward a Ay,bothesv‘c

“Mathematical language for quantifying uncertainty” - Wasserman



Probability

Q : Sample Space, set of all outcomes of a random experiment
A : Event (A € Q), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events—R



Probability

Q : Sample Space, set of all outcomes of a random experiment
A : Event (A € Q), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events—R

1. P(Q)=1
2. P(A)=0,forall A

If A, A, ... are disjoint events then: P(U A;) = Z P(A;)



Probability

Q : Sample Space, set of all outcomes of a random experiment

A : Event (A € Q), collection of possible outcomes of an experiment
P(A): Probability of event A, P is a function: events—R

P is a probability measure, if and only if

1. P(Q) =1
2. P(A)=0,forall A

IfA, A, ... are disjoint events then: P(U Aj) = Z P(A:)



Probability

Some Properties:




Probability

Some Properties:

1. If B S Athen P(A) = P(B)




Probability

Some Properties:

1. If B S Athen P(A) = P(B)
2. P(AUB) < P(A) + P(B)




Probability

Some Properties:

If B & A then P(A) = P(B)
P(AU B) < P(A) + P(B)
P(A N B) < min(P(A), P(B))
P(mA)=P(Q/A)=1-P(A)

is set difference

B 0 h =

—




Probability

Some Properties:

1. If B & Athen P(A) = P(B)
2. P(AUB)=<P(A)+P(B)

3. P(AN B)<min(P(A), P(B))
4. P(mA)=P(Q/A)=1-P(A)

| is set difference
P(A N B) will be notated as P(A, B)




Probability

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?



Probability

Independence
Two Events: A and B
Does knowing something about A tell us whether B happens (and vice versa)?

1. A:first flip of a fair coin; B: second flip of the same fair coin
2. A:sentence mentions (or not) the word “happy”
B: sentence mentions (or not) the word “birthday”



Probability

Independence
Two Events: A and B
Does knowing something about A tell us whether B happens (and vice versa)?

1. A:first flip of a fair coin; B: second flip of the same fair coin
2. A:sentence mentions (or not) the word “happy”
B: sentence mentions (or not) the word “birthday”

Two events, A and B, are independent iff. P(A, B) = P(A)P(B)
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Conditional Probability

P(A, B)
[ R ——



Probability

Conditional Probability

P(A, B)
[ R ——

“|” is often referred to as “given”:

“The probability of A given B is ...”




Probability

Conditional Probability

P(A, B)
[ R ——

Two events, A and B, are independent iff. P(A, B) = P(A)P(B)
P(A, B) = P(A)P(B) iff P(B|A) = P(B)

Interpretation of Independence:
Observing A has no effect on probability of B.
(Disjoint events, typically, are not independent!)
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Two events, A and B, are independent iff. P(A, B) = P(A)P(B)
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Interpretation of Independence:
Observing A has no effect on probability of B. (and vice-versa)
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Probability

Conditional Probability

P(A, B)
O R ——
P(B)

Two events, A and B, are independent iff. P(A, B) = P(A)P(B)
P(A, B) = P(A)P(B) iff P(B|A) = P(B)

Interpretation of Independence:
Observing A has no effect on probability of B. (and vice-versa)
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. ' Dependence example:
Probability |
' \W1=happy: first word is “happy”

' W2=Dbirthday: second word is “birthday”
Conditional Probability
! from observing language data, we find:

also P(BJA) # P(B):
i P(W2=birthday|W1=happy) = .025 / .1 = .25 # 0.05 = P(W2=birthday)
|

P(A, B) ' P(W1=happy) = 0.1, P(W2=birthday) = 0.05
T [2) e — : P(W1=happy, W2=birthday) = 0.025
P(B) | thus P(A, B) # P(A)P(B)

Two events, A and B, are independent iff. P(A, B) = P(A)P(B)
P(A, B) = P(A)P(B) iff P(B|A) = P(B)

Interpretation of Independence:
Observing A has no effect on probability of B. (and vice-versa)



Why Probability?

A formality to make sense of the world.

1.

To quantify uncertainty in language data.
Should we believe something or not? Is it a meaningful difference?

To be able to generalize from one situation to another.
Can we rely on some information? What is the chance Y happens?

To create structured data.
Where does X belong? What words are similar to X?
(necessary no matter what approaches take place)
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A formality to make sense of the world.

1.

To quantify uncertainty in language data.
Should we believe something or not? Is it a meaningful difference?

To be able to generalize from one situation to another.
Can we rely on some information? What is the chance Y happens?

To create structured data.
Where. does X belong? What words are similar to X?
(necessary no matter what approaches take place)
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Words: Tokens and Types

word tokens - an individual word instance. (a list)
word types - distinct words. (a set)

V - "vocabulary" |V| - vocabulary size (number of types)

N - number of tokens



Words: Tokens and Types

word tokens - an individual word instance. (a list)
word types - distinct words. (a set)

V - "vocabulary" |V| - vocabulary size (number of types)

N - number of tokens

Corpus - a natural language dataset
(i.e. observational data of word sequence in the wild!)



Corpus Tokens = N Types = |V|

Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google n-grams 1 trillion 13 million

DTy BBl Rough numbers of types and tokens for some English language corpora. The
largest, the Google n-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger. (SLP3, 2023)

V - "vocabulary" |V| - vocabulary size (number of types)

N - number of tokens

Corpus - a natural language dataset
(i.e. observational data of word sequence in the wild!)



Corpus Tokens =N Types = |V|

Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google n-grams 1 trillion 13 million

DTy BBl Rough numbers of types and tokens for some English language corpora. The
largest, the Google n-grams corpus, contains 13 million types, but this count only includes

types appearing 40 or more times, so the true number would be much larger. (SLP3, 2023)

V - "vocabulary" |V| - vocabulary size (number of types) Herndon or

N - number of tokens Heap's Law:

Corpus - a natural language dataset V| = kNP
(i.e. observational data of word sequence in the wild!)
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1. Word Tokenizers

import re

def tokenize(sentence):

tokens = re.split(r'\s', sentence)

return tokens




Tokenizers

1. Word Tokenizers

import re

def tokenize(sentence):

tokens = re.split(r'\s', sentence)

return tokens

a. nltk's TreebankWordTokenizer

b. DLATK's happierfuntokenizing.py (latest version)



https://www.nltk.org/api/nltk.tokenize.TreebankWordTokenizer.html#nltk.tokenize.TreebankWordTokenizer
https://github.com/dlatk/happierfuntokenizing
https://github.com/dlatk/dlatk/blob/public/dlatk/lib/happierfuntokenizing.py

Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding



Tokenizers

1. Word Tokenizers

2. Byte-Pair Encoding
Motivations:
— more data-driven; no predefined words or rules
— allow for subwords (e.g. "unlikeliest" -> "un", "like", "liest") — better for
unseen words or capturing semantics of parts of words.



Tokenizers Input: set of strings D, target vocab size k

procedure BPE(D, k)
V' < all unique characters in D
(about 4,000 in English Wikipedia)

13
2:
1. Word Tokenizers 3
4:
2. Byte-Pair Encoding 5. while |V| < k do > Merge tokens
6
7
8
9

Motivations: tr,,tr < Most frequent bigram in D
— more data-driven; no pre tnew < tr, +tgr > Make new token
— allow for subwords (e.g. V «V + [tnew]
unseen words or capturing Replace each occurrence of ¢, tp in
10: D with txgw
11: end while
12: return V/

13: end procedure

(Bostrum & Durrett, 2020)



https://aclanthology.org/2020.findings-emnlp.414.pdf

1: Input: set of strings D, target vocab size k

Tokenizers 2: procedure BPE(D, k)

3 V' <« all unique characters in D

4: (about 4,000 in English Wikipedia)
1. Word Tokenizers 5:  while |V| < k do > Merge tokens

6 tr,tr < Most frequent bigram in D

7 tnew ¢t +tr > Make new token

8

9

2. Byte-Pair Encoding VeV 4 [famwl]
NEW

Motivations: Replace each occurrence of 1, tg in
— more data-driven; no predefined w 1 D with txgw
11: end while

N
allow for subwords (e.g. "unlikelies o ot

unseen words or capturing semantic| 13: end procedure

(Bostrurm & Durrett, 2020)
[corpus vocabulary

_; d, e, 1, 1, n;, i0; r; 8; t, W

low_|lowest_|[newer_|wider _
low_{lowest_[newer_|new _
low_|newer_|newer_|new _
low |newer |wider _

low_|newer_|wider_ (SLP3, p.18)



https://aclanthology.org/2020.findings-emnlp.414.pdf

Tokenizers

Word Tokenizers

1: Input: set of strings D, target vocab size k

2: procedure BPE(D, k)

3 V' <« all unique characters in D

4 (about 4,000 in English Wikipedia)
5 while |V| < k£ do > Merge tokens
6 tr,tr < Most frequent bigram in D
7 tnew ¢t +tr > Make new token
8

9

2. Byte-Pair Encodin
y & V « V + [taew]
Motivations: Replace each occurrence of 7, tr in
— more data-driven; no predefined w 1 D with txew
I : b d wunlikeli 11: end while
— dlIOW TOr subworas (e.g. unilikelies 12: return V
unseen words or capturing semantic| 13: end procedure
[(Daoactriima
| corpus vocabulary (original) (Bestrarm & Durrett, 2020)
low_|lowest_|[newer_ |wider_ | —? d, e, i, 1, n, o, r, s, t, w
low_|lowest_[newer_ |new _ . .
low_|newer_ |newer_ |new _ vocabulary (3 iterations later)
low_|newer_ |wider_ _,d,e,i,1,n,0,1,s, t,w, er, er_, ne
low |newer_ |wider_ (SLP3, p_19)
l



https://aclanthology.org/2020.findings-emnlp.414.pdf

Tokenizers

1. Word Tokenizers
2. Byte-Pair Encoding

3. Wordpiece
Choose pairings based on what increases likelihood of data.
Does putting "a" and "b" together increase ability to model the corpus?
This can be quantified by: p('ab')

p(‘a')p('b’)

More here: (Shuster and Nakajima, 2012; Kudo and Richardson, 2018)



https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf
https://aclanthology.org/D18-2012/




